HF処理前の出発合金の構造がHF処理後の多孔質Cuの触媒活性にどのような影響を与えるか調べるために、種々の温度で熱処理した合金をHF処理して การแปล - HF処理前の出発合金の構造がHF処理後の多孔質Cuの触媒活性にどのような影響を与えるか調べるために、種々の温度で熱処理した合金をHF処理して อังกฤษ วิธีการพูด

HF処理前の出発合金の構造がHF処理後の多孔質Cuの触媒活性にどのよう

HF処理前の出発合金の構造がHF処理後の多孔質Cuの触媒活性にどのような影響を与えるか調べるために、種々の温度で熱処理した合金をHF処理して得た試料amor-CuTiHFとCuTi(t)HF(t=473-873 K)についてパラニトロフェノール(p-NP)の還元反応に対する触媒活性を調べた。すべての試料について短時間でp-NPがp-APに転化した。HF処理を行っていないamor-CuTiでは還元反応はほぼ進行せず不活性であった。amor-CuTiHFとCuTi(t)HF(t=473-873 K)について反応時間15 minでのp-NPの転化率をFig. 3-14に示した。多孔質Cu触媒の活性は熱処理温度上昇とともに向上し、573Kで熱処理した試料CuTi(573) HFが最も高い触媒活性を示した。多孔質Cu触媒の表面積はTable 3-3に示したように573Kで熱処理を施すことでamor-CuTiHFに比べ表面積が増大している。温和な条件でアモルファス合金を加熱すると、安定な状態に移行しようと原子が短範囲で移動し、構造が徐々に変化する。XRD測定からamor-CuTi, CuTi(473), CuTi(573)の明確な構造の差は観察できなかったが、573Kという熱処理がアモルファス合金内での原子移動を効果的に促し、表面積や触媒活性の向上につながったと考えられる。573 Kよりさらに高い温度で熱処理した試料について触媒活性は低下した。特にCuTi(673)HFについては最も表面積が高いにもかかわらず触媒活性はCuTi(473)HFや CuTi(573)HFよりも低かった。この理由として作製された多孔質Cuの結晶度が関係していると考えられる。Fig. 3-3に示したように、CuTi(773)HFの結晶度はamor-CuTiHFの結晶度よりも高くCuTi(773)HFの結晶子径が大きいことが示唆される。つまり、amor-CuTiHFの方が多くのダングリングボンドを有すため表面積あたりの触媒活性が高くなったということが予想される。多孔質Cuの触媒活性はHF処理前の構造状態に非常に強く影響し、573 Kという結晶化に至らないような熱処理を行うことで多孔質Cuの結晶度はアモルファス合金から調製した試料とほぼ変わらず、表面積の大きな多孔質Cuを調製することができる。これらのことから触媒活性に影響するのは表面積だけではないことが分かり、詳細な構造(分散性、粒子径)については今後検討していきたい。またCuの電子状態もパラニトロフェノール(p-NP)の還元反応に非常に重要であるため、構造と合わせて検討していきたい。
また熱処理とHF処理の順序を変えた試料amor-CuTiHF-V(673)にHF処理後熱処理を施した試料について同様の反応を行ったところ、反応はほぼ進まず、熱処理後HF処理という順序が非常に重要であるということが分かった。
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (อังกฤษ) 1: [สำเนา]
คัดลอก!
Sample amor-CuTiHF alloys annealed at different temperatures to find it affecting what Catalysis in porous Cu HF treatment after HF pre-departure alloy structure HF treatment, and CuTi (t) HF (t = 473-873 K) for catalytic reduction reaction of nitrophenol (p-NP) were investigated. All the samples in a short time changed p-AP p-NP. Redox reactions does not progress almost in amor-CuTi not going to HF, was inactive. amor-CuTiHF and CuTi (t) HF (t = 473-873 K) for reaction time is a conversion rate of p-NP in 15 min Fig. Shown in 3-14. Porous Cu catalyst activity and increased with increasing annealing temperature and annealed at 573 K samples CuTi (573) HF most high catalytic activity. Porous Cu catalyst surface area are compared with the amor-CuTiHF increases surface area by applying heat at 573 K as shown in Table 3-3. Stable to heat the amorphous alloy under mild conditions, and gradually change the structure, and move short range nuclear trying to migrate to the State. Considered could not be observed from XRD amor-CuTi, CuTi (473), and CuTi (573) a clear structural differences, but promotes effective atoms moving in amorphous alloys heat treatment of 573 K, led to improvements in surface area and catalytic activity. On samples annealed at temperatures higher than 573 K decreased catalytic activity. Despite the particularly CuTi (673) for HF surface area the most catalytic CuTi (473) HF and CuTi (573) HF lower than. Possible related to the crystallinity and porous Cu was prepared as a reason for this. Fig. 3-3 as stated, CuTi (773) HF the crystallinity is higher crystallinity and Ymor-cutihf CuTi (773) HF crystallite size is greater that suggested. I.e., have Ymor-cutihf a lot of dangling bonds because higher catalytic activity per surface area that is expected. Catalysis in porous Cu heat HF operations structure to very strong influence, not leading to the crystallization of 573 K in porous Cu crystallinity samples prepared from amorphous alloys and almost unchanged, to prepare the large surface area of porous Cu. From those that affect the catalytic activity is not only the surface area for detailed structure (dispersion and particle size) will consider. Also for electronic States of Cu are very important in redox reactions of nitrophenol (p-NP) structure and together consider.Also found out that so far changed the order HF processing and heat treatment of materials amor-CuTiHF-V (673) HF after heat processed samples were similar reactions reactions almost going, heat treatment after HF processing order is very important, is.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 2:[สำเนา]
คัดลอก!
For the structure of the HF treatment before departure alloy to examine what effect the catalytic activity of the porous Cu after HF treatment, a sample amor-CuTiHF where the alloy is heat-treated at various temperatures obtained by HF treatment I examined the catalytic activity for the reduction reaction of p-nitrophenol (p-NP) for CuTi (t) HF (t = 473-873 K). P-NP was converted to p-AP in a short time for all samples. Amor-CuTi in reduction reaction not subjected to HF treatment was inactive does not proceed almost. the conversion of p-NP in the reaction time 15 min I was shown in Fig. 3-14 for amor-CuTiHF and CuTi (t) HF (t = 473-873 K). Activity of the porous Cu catalyst increased with increasing heat treatment temperature, the sample CuTi (573) HF that was heat-treated at 573K showed the highest catalytic activity. Surface area of the porous Cu catalysts have increased surface area compared to the amor-CuTiHF by applying a heat treatment at 573K, as shown in Table 3-3. When heating the amorphous alloy under mild conditions, atoms attempt to migrate to the stable state is moved a short range, the structure is gradually changed. Amor-CuTi from XRD measurements, CuTi (473), but the difference between the definite structure of CuTi (573) could be observed, the heat treatment of 573K effectively encourage atom transfer in the amorphous alloys, surface area and catalytic activity It is believed to have led to improvements. Catalytic activity decreased for samples heat-treated at a higher temperature than 573 K. Especially CuTi (673) most surface area is high despite catalytic activity for HF was lower than CuTi (473) HF and CuTi (573) HF. Crystallinity of the porous Cu fabricated as this reason I is considered to be involved. Fig. As shown in 3-3, CuTi (773) HF crystallinity of suggesting that large crystallite size of high CuTi (773) HF than crystallinity of the amor-CuTiHF. In other words, it is expected that that person amor-CuTiHF is the catalytic activity per surface area for having a large number of dangling bonds was higher. Catalytic activity of the porous Cu affects very strongly to the structural state prior to HF treatment, almost crystallinity of the porous Cu is a sample prepared from the amorphous alloy by heat treatment that does not lead to crystallization of 573 K The unchanged, it is possible to prepare large porous Cu surface area. It can be seen that it is not the only surface area to affect the catalytic activity from these things, detailed structure (dispersibility, particle diameter) we would like to consider the future for. In addition, since the electronic state of Cu is also very important in the reduction reaction of para-nitrophenol (p-NP), we would like to consider in conjunction with the structure.
The place where it was subjected to the same reaction for subjected to after the HF treatment heat treatment to sample amor-CuTiHF-V that changed the order of the heat treatment and the HF treatment (673) sample, the reaction is not nearly progress, the order that the heat treatment after the HF treatment I found that it is very important.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (อังกฤษ) 3:[สำเนา]
คัดลอก!
Before HF processing after the departure HF processing structure of the alloy in the catalytic activity of porous Cu investigate how to influence the CuTi Amor CuTiHF sample and processing HF alloy obtained by heat treatment at different temperatures (t (T) by HF 473. K 873. Para nitro phenol were p of NP examined the catalytic activity for the reduction reaction. All the samples in a short time by NP in AP conversion. In CuTi Amor HF process is not performed by the reduction reaction is almost no progress was inert.CuTiHF Amor and CuTi t t. HF of 473 K 873. Fig P of NP conversion rate of reaction time are shown in 15 minutes. The catalytic activity of porous Cu increased with the increase of annealing temperature, the sample annealed at 573 CuTi K of 573. HF showed the highest catalytic activity. The surface area of porous Cu catalyst as shown in Table 3-3 in heat treatment is performed at 573 K compared to CuTiHF Amor surface area increases. Under mild conditions, and to heat the amorphous alloyMove to a stable state in the short range atomic structure changes gradually. From the measurement XRD Amor CuTi, CuTi -- Study of 473 CuTi 573 clear difference could not be observed structure of the effective migration of atoms in amorphous alloys and heat treatment K 573, improvement of catalytic activity and surface area are considered. In addition to heat treatment at a temperature which is higher than the K 573 decrease as the catalytic activity of the samples.In particular CuTi 673 in most of the surface area of the HF despite the catalytic activity of CuTi 473. HF and CuTi of 573. Lower than HF. And for this reason are considered to be related to the degree of the porous Cu crystals. Fig as shown in 3 of the CuTi 773 than the degree of CuTiHF Amor CuTi high crystal degree of HF crystals at the larger crystallite size of HF suggests. In other words,The system of CuTiHF had many dangling bonds with catalytic activity for per surface area that is expected to be higher. The catalytic activity of porous Cu before processing HF structure state is very strong, so as not to affect the crystallization and 573 K heat treatment is carried out to the degree of the porous Cu crystal prepared from amorphous alloy sample and almost unchanged, it is possible to prepare a large surface area porous Cu.It is not only the surface area of the catalytic activity of the detailed structure of the particle diameter distribution, I want to study in the future. The electronic states of the Cu paranitrophenol P NP for reduction reaction is very important, I want to study together. At the turn of HF sample processing and heat treatment on the order of CuTiHF Amor V 673 HF after processing the sample is subjected to a heat treatment is carried out for the reaction, the reaction is almostIt was found that after heat treatment is very important in order HF processing. At
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: